30 research outputs found

    Wireless Power Transfer Technology for Electric Vehicle Charging

    Get PDF
    In the years 1884-1889, after Nicola Tesla invented "Tesla Coil", wireless power transfer (WPT) technology is in front of the world. WPT technologies can be categorized into three groups: inductive based WPT, magnetic resonate coupling (MRC) based WPT and electromagnetic radiation based WPT. MRC-WPT is advantageous with respect to its high safety and long transmission distance. Thus it plays an important role in the design of wireless electric vehicle (EV) charging systems. The most significant drawback of all WPT systems is the low efficiency of the energy transferred. Most losses happen during the transfer from coil to coil. This thesis proposes a novel coil design and adaptive hardware to improve power transfer efficiency (PTE) in magnetic resonant coupling WPT and mitigate coil misalignment, a crucial roadblock to the acceptance of WPT for EV. In addition, I do some analysis of multiple segmented transmitters design for dynamic wireless EVs charging and propose an adaptive renewable (wind) energy-powered dynamic wireless charging system for EV

    Wireless Power Transfer: Survey and Roadmap

    Get PDF
    Wireless power transfer (WPT) technologies have been widely used in many areas, e.g., the charging of electric toothbrush, mobile phones, and electric vehicles. This paper introduces fundamental principles of three WPT technologies, i.e., inductive coupling-based WPT, magnetic resonant coupling-based WPT, and electromagnetic radiation-based WPT, together with discussions of their strengths and weaknesses. Main research themes are then presented, i.e., improving the transmission efficiency and distance, and designing multiple transmitters/receivers. The state-of-the-art techniques are reviewed and categorised. Several WPT applications are described. Open research challenges are then presented with a brief discussion of potential roadmap

    Energy Efficient and Adaptive Design for Wireless Power Transfer in Electric Vehicles

    Get PDF
    Wireless power transfer (WPT) could revolutionize global transportation and accelerate growth in the Electric Vehicle (EV) market, offering an attractive alternative to cabled charging. Coil misalignment is inevitable due to driver parking behaviour and has a detrimental effect on power transfer efficiency (PTE). This paper proposes a novel coil design and adaptive hardware to improve PTE in magnetic resonant coupling WPT and mitigate coil misalignment, a crucial roadblock in its acceptance. The new design was verified using ADS, providing a good match to theoretical analysis. Custom designed receiver and transmitter circuitry was used to simulate vehicle and parking bay conditions and obtain PTE data in a small-scale setup. Experimental results showed that PTE can be improved by 30% at the array's centre, and an impressive 90% when misaligned by 3/4 of the arrays radius. The proposed novel coil array achieves overall higher PTE compared to the benchmark single coil design

    Near-field Wireless Power Transfer Technology for Unmanned Aerial Vehicles : A Systematical Review

    Get PDF
    Unmanned Aerial Vehicles (UAVs) technology has seen a significant boost in the past ten years and has been widely adopted in entertainment, rescue, intelligent transportation, notouch delivery, environmental monitoring and other real world applications. However, the ranging limitation due to the shortage of battery energy capacity remains a major issue hindering further development of UAVs. Wireless power transfer (WPT) technology is a new technology of great potentials in improving the endurance of UAVs. The integration of WPT into UAV not only activates the recharging of UAVs batteries, but also enables UAVs to recharge other devices. Moreover, wireless charging technology allows the device to be fully enclosed and suitable for harsh weather conditions. This paper presents a comprehensive review in regard to the state-of-the-art of nearf ield WPT technologies for UAV charging, including technologies characteristics, design issues, as well as multiple case studies. A comparative analysis of existing technologies are also presented, associated with key future research discussions of WPT for UAVs

    Analysis of Multiple Segmented Transmitters Design in Dynamic Wireless Power Transfer for Electric Vehicles Charging

    Get PDF
    Multiple segmented transmitters' rail for dynamic wireless power transfer (DWPT) electric vehicles charging can supply high power transfer efficiency (PTE). The previous research discussed the vehicles’ speed is a key factor that can affect the design of the rail (especially, the distance between two neighbouring segmented transmitters T) to maximise the system's PTE. However, it finds out not the vehicle's speed, but the size of the transmitter rail can affect the design of T for optimising the PTE

    Energy Efficient and Adaptive Design for Wireless Power Transfer in Electric Vehicles

    Get PDF
    Wireless power transfer (WPT) could revolutionize global transportation and accelerate growth in the Electric Vehicle (EV) market, offering an attractive alternative to cabled charging. Coil misalignment is inevitable due to driver parking behaviour and has a detrimental effect on power transfer efficiency (PTE). This paper proposes a novel coil design and adaptive hardware to improve PTE in magnetic resonant coupling WPT and mitigate coil misalignment, a crucial roadblock in the acceptance of WPT for EVs. The new design was verified using ADS, providing a good match to theoretical analysis. Custom designed receiver and transmitter circuitry was used to simulate vehicle and parking bay conditions and obtain PTE data in a small-scale setup. Experimental results showed that PTE can be improved by 30% at the array’s centre, and an impressive 90% when misaligned by 3/4 of the arrays radius. The proposed novel coil array achieves overall higher PTE compared to the benchmark single coil design

    Effective capacity analysis of smart grid communication networks

    Get PDF
    Smart grid represents a significant new technology of improving the efficiency, reliability and economics of the production, transmission and distribution of electricity that helps reduce carbon emissions. Communication networks become a key to achieving smart grid benefits due to their capability of delivering data and control signals. However, there does not exist a unified approach to quantify how well a communication network supports smart grid applications. In this paper, effective capacity is exploited as a good candidate to quantitatively measure how well the communication network supports smart grid applications, regardless of specific network technologies. Case studies using the effective capacity are given and analyzed by simulations in different smart grid application scenarios

    Achieving Low Carbon Emission for Dynamically Charging Electric Vehicles through Renewable Energy Integration

    Get PDF
    Dynamic wireless charging for Electric Vehicles (EVs) can promote the take-up of EVs due to its potential of extending the driving range and reducing the size and cost of batteries of EVs. However, its dynamic charging demand and rigorous operation requirements may stress the power grid and increase carbon emissions. A novel adaptive dynamic wireless charging system is proposed that enables mobile EVs to be powered by renewable wind energy by taking advantages of our proposed traffic flow-based charging demand prediction programme. The aim is to cut down the system cost and carbon emissions at the same time, whilst realising fast demand prediction and supply response as well as relieving the peak demand on the power grid. Simulation results show that the proposed system can adaptively adjust the demand side energy response according to customers’ welfare analysis and charging price, thereby to determine the power supply method. Moreover, due to the prioritised use of renewable energy, EV charging system requires less electricity from the power grid and thus the overall carbon emissions are reduced by 63.7%

    Survey on Magnetic Resonant Coupling Wireless Power Transfer Technology for Electric Vehicle Charging

    Get PDF
    Wireless Power Transfer technology (WPT) makes it possible to supply power through an air-gap, without the need for current-carrying wires. One important technique of WPT technology is magnetic resonant coupling (MRC) WPT. Based on the advantages of MRC WPT, such as safety and high power transfer efficiency over a long transmit distance, there are many possible applications of MRC WPT. This paper provides a comprehensive, state-of-the-art review of the MRC WPT technology and wireless charging for electric vehicle (EV). A comparative overview of MRC WPT system design which includes a detailed description of the prototypes, schematics, compensation circuit topologies (impedance matching), and international charging standards. In addition, this paper provides an overview of wireless EV charging including the static wireless EV charging and the dynamic wireless EV charging, which focuses on the coil design, power transfer efficiency, and current research achievement in literature

    Complexity Analysis of a Mixed Memristive Chaotic Circuit

    No full text
    In this paper, we design a chaotic circuit with memristors, which consists of two flux-controlled memristors and a charge-controlled memristor, and the dimensionless mathematical model of the circuit was established. Using the conventional dynamic analysis methods, the equilibrium point set and stability of the chaotic system were analyzed, and the distribution of stable and unstable regions corresponding to the memristor initial states was determined. Then, we analyze the dynamical behaviors with the initial states of the memristors and the circuit parameter of the circuit system, respectively. By using spectral entropy (SE) and C0 complexity algorithms, the dynamic characteristics of the system were analyzed. In particular, the 2D and 3D complexity characteristics with multiple varying parameters were analyzed. Some peculiar physical phenomenon such as coexisting attractors was observed. Theoretical analysis and simulation results show that the chaotic circuit has rich dynamical behaviors. The complicated physical phenomenon in the new chaotic circuit enriches the related content of chaotic circuit with memristors
    corecore